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Strength and elongation of multifilamentary 
Nb3Sn superconducting composite materials 
with small amounts of Nb3Sn compound 

SHOJIRO OCHIAI,  KOZO OSAMURA 
Department of Metallurgy, Kyoto University, Sakyo-ku, Kyoto 606, Japan 

In order to describe the tensile strength and elongation to failure of multifilamentary Nb3Sn 
superconducting composite materials with small amounts of Nb3Sn showing multiple fracture, 
approximate calculation methods are proposed. In the proposed calculation methods, the 
concept of shear-lag analysis and the plastic instability approach for metallic composites are 
employed. The experimental results are fairly well described by the present calculation 
methods. 

1. Introduct ion  
In our former work [1], it was found that Nb3Sn 
multifilamentary bronze-processed superconducting 
composite materials consisting of Nb3 Sn compound, 
niobium filaments, Cu-Sn matrix, niobium barrier 
and copper as a stabilizer show two types of fracture 
mode, depending on the volume fraction of Nb3Sn 
compound. When the fraction of Nb3Sn is small, 
the drop of load-bearing capacity due to fracture 
of Nb3Sn can be compensated mainly by strain- 
hardening of the ductile constituents of niobium, 
Cu-Sn and copper. This results in a Type I fracture 
mode, characterized by high elongation to failure of 
composites as a whole and multiple fracture of the 
compound. On the other hand, when the fraction of 
Nb3Sn is large, the fracture of one region of Nb3Sn 
causes fracture of neighbouring Nb3Sn regions one 
after another. This results in a Type II fracture mode, 
characterized by a brittle fracture mode of composites 
as a whole with very low elongation to fracture, being 
nearly equal to the fracture strain of the Nb 3 Sn com- 
pound, and no multiple fracture of the compound. 
The dependency of fracture mode on volume fraction 
of Nb 3 Sn compound can be explained by the Kelly- 
Tyson model [2] as shown in our former work [1]. 

The Type I! fracture mode is analogous to that of 
fibre-reinforced metals, which has been studied in 
detail [3--10]. On the other hand, the Type I fracture 
mode has not been studied in detail up to date. The 
aim of the present paper is to describe the strength and 
elongation of multifilamentary Nb 3sn superconduct- 
ing composite materials which have small volume 
fractions of Nb 3 Sn and therefore show multiple frac- 
ture of Nb3Sn. 

2. Experimental results 
The analysis of strength and elongation to failure was 
carried out for multifilamentary composite wires con- 
sisting of a total of 745 niobium filaments embedded 
in Cu-Sn matrix, niobium barrier and copper as 
stabilizer, where the overall diameter was 2.6 mm. As 

the microstructure and tensile behaviour of specimens 
before and after annealing at 973 and 1073 K up to 
1730ksec has been studied in detail in our former 
works, in which the specimens analysed in the present 
work were named as $3 [I], the strength and elon- 
gation to failure will be analysed using the data 
presented in our former work [1]. 

3. Modelling and calculation method 
In the present work, the niobium, Nb3 Sn, Cu-Sn and 
copper are denoted 1 to 4, respectively, and the inter- 
faces between niobium and Nb3Sn and that between 
Nb3Sn and Cu-Sn as 1-2 and 2-3, respectively. 

3.1. Modelling of composites 
In all specimens investigated, the Nb3Sn compound 
showed multiple fracture as typically shown in Fig. 1. 
In order to formulate the distribution of tensile stress 
and strain, one should beforehand model how the 
Nb3Sn compound is broken. In this point, One can hit 
on two extreme cases A and B, as shown in Fig. 2, 
under the approximation that the length of segmented 
Nb3 Sn compound, l, is the same in each case. In Case 
A, the fracture of Nb 3 Sn occurs homogeneously on a 
macroscopic scale. On the other hand, in Case B the 
fracture of Nb3Sn occurs at the same cross-sections. 

In Case A, the strain of ductile components of 
niobium, Cu-Sn and copper could be approximated 
to have the same strain ~ (= strain of composite as a 
whole) at any cross-section, and also the contribution 
of stress of segmented Nb 3 Sn (= 52 V2 where 52 is the 
average stress of Nb 3 Sn) to that of the composite is the 
same in each cross-section. Namely, taking x as the 
distance from one fracture end of Nb3Sn, where 
x = 0 and l correspond to one fracture end and 
another one, respectively, as shown in Fig. 2, the 
values of g and 52 are independent of x, to a first 
approximation. 

On the other hand, in Case B, the strain of ductile 
components is highest in the cross-sections where the 
Nb 3 Sn is broken and it decreases with increasing x up 
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Figure 1 Multiple fracture of Nb 3 Sn compound after fracture of composites as a whole in specimens annealed at (a) 973 K for 432 ksec and 
(b) 1073K for 1730ksec. The copper stabilizer, niobium barrier and a portion of the Cu Sn matrix were removed by chemical etching after 
the tensile test, 

to x = l /2  where the strain of ductile components is 
lowest, while the contribution of stress of  Nb3Sn to 
that of  the composite is zero at x = 0 but increases 
with increasing x, reaching a maximum at x = l /2.  

The strain of the composite as a whole, ~, is given by 
the average of  the strain from x = 0 to I. 

3.2. Calculation method of strength and 
elongation for Case (A) 

In the present work, the triaxial stresses arising from 
the difference of mechanical properties among the 
constituents and from the fracture of  Nb3Sn com- 
pound are neglected as a first approximation, and the 
stress in each component in the longitudinal direction 
will be calculated. 

For  ductile components, the relation of true tensile 
stress a to true tensile strain e can be approximately 
expressed by 

0. = Ee for e N ~y (1) 

a = [a + b(~ - Sy)]" for ~ > ~y (2) 

where E is the Young's modulus, ey is the tensile yield 
strain given by 6 y / E  where 0.y is the tensile yield stress, 

Cu-Sn Nb 

7Nb3Sn 
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--x= 0 

-x=[  

- x =  0 

(a) {b} 

Figure 2 Schematic representation of modelling of (a) Case A and 
(b) Case B. 
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and a, b and n are constants which can be determined 
by solving Equations 3 to 5 below, using known values 
of yield stress 0.y, tensile strength 0., and normal 
elongation to failure eu, which is converted to true 
strain e, by eu = In (1 + eu): 

O'y ---~ a n (3) 

nb - a 
8, - b + ey (4) 

0.u = (nb)" exp ( - e u )  (5) 

The normal stress of composites o-~ at high strain for 
Case A is given by 

O" c = {[a 1 -I-- b l (~  - ~yl)]nlVl -l- [a3 + b3(~ - ~y3)]n3v3 

+ [a 4 --F b4(~, - -  ~;y4)] n" g4} exp ( - g )  + 62 1/2 

(6) 
The value of ~2 can be inferred in the following 

manner. The stress can be transferred to segmented 
Nb3Sn through N b -N b 3 S n  and Nb3Sn- (Cu-Sn)  
interfaces. Picking up the element consisting of an 
inner core of niobium filament with a diameter of  dl, 
an outer sleeve of C u - S n  with an inner diameter of 
d~+2 and an outer diameter of d1+2+3, and Nb3Sn 
between niobium and Cu-Sn ,  as shown in Fig. 3, the 
stress of  Nb3 Sn, 0"2, at position x is given by 

d0.2(x)  - 7~dlTl_2(x ) --I- 7~dl+2"c2_3(x ) (7)  
A~ dx 

where A 2 is the area of Nb3Sn in the element, and *~-2 
and r~_ 3 are the shear stresses exerted at N b -N b 3Sn  
and Nb3Sn- (Cu-Sn)  interfaces, respectively. As the 
bonding strengths between niobium and Nb3Sn and 
between Nb3Sn and C u - S n  are high enough to sup- 
press debonding at the respective interface, as ascer- 
tained with SEM observation, the shear stress at the 
former interface is determined by the shear stress of 
niobium and that at the latter interface by the shear 
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Figure 3 Schematic representation of an element with a length l, 
composed of (1) niobium filament, (2) Nb3Sn compound and (3) 
Cu-Sn matrix. 

stress of Cu-Sn.  Substituting 0" = 2z where ~ is 
the shear stress and e = 7/2 where 7 is the shear 
strain into Equation 1, and considering the yield 
phenomenon in shear, we have 

= G7 for 7 _-< 7y (8) 

r = ~ a + ~ (7 - 7y) for 7 ~ 7y (9) 

In order to employ Equations 8 and 9, we should 
estimate 7- 

As the strain ~ is large enough compared to the 
strain of Nb3 Sn, the difference in displacement between 
niobium and Nb3Sn, AUI_2, and that between Nb3Sn 
and Cu-Sn,  z~U2_3, are approximately given by 

AU,_2 = AU2_, = ~ ( ~ - x )  (10) 

In order to estimate 7 by using A U given by Equation 
10, we apply the Dow's approximation [11]. Defining 
cl and c 3 as the distances of the centroids of niobium 
and Cu-Sn  from the Nb-Nb3Sn and Nb3Sn- 
(Cu-Sn) interfaces, respectively, the shear strain 
between niobium and Nb3Sn, Y~ 2, and that between 
Nb3Sn and Cu-Sn,  723, are given by 

AUI_2 (•/2) - x 
71-2 = - 5~ (11) 

C 1 C 1 

AU2_ 3 (I/2) - x 
72-3 = = ~ (12) 

C 3 C 3 

dl 2 ~/2 
cl - 2 4 dl (13) 

6 ' 3 =  (fl~+2+d2+2+:) 1 / 2 8  d1+22 (14) 

Takingy = (/ /2) - x ,  the shear stress in niobium and 
that  in C u - S n  are l o w e r  than the  respect ive  shear 
y ie ld  stress for  0 < y < 71 a n d  0 < y < y~, respec-  
t ively,  where Yl and 73 are given by 

Y1 = ClTyl/g (15) 

-Y3 -= C37y3/~ (16) 

respectively. Combining Equations 8 to 16, we have 

~'1-2 and ~2-3 as a function o fy  (or x) and then we have 
0"2 at position y by integrating Equation 7. The results 
are summarized as follows. 

When y~ > Y3, namely cl 7y~ > c3 Yy3, 

0" 2 

0-2 = 

1 (7[dlaly27yl +. 7~dl+2G3y27y3) 
\ 2yl ~ ) 

f o r y  < Yl, Y3 

1 ~d l  Gly2771 ~dl+2G3y3T.v3 
7.  2yl + 2 

+~:d,+2 a , + - - } - - ~ , Z -  1 

,}/[ -- a; 3+ 2(n 3 + 1) 2y 3 j j  

fory3 = < Y = < Yl 

0-2 = 
1 {ffdlGlY17y, 7"cdl+2G3Y37y3 

2 + 2 

{E ( )]'+ blT>t y + 7rdl al + ~ ~ -  1 

a;. ÷ 

+ rCdl+2 a3 + - 7 - -  Z -- 

1 } / / [  b3 7y3~ 
- a3 '+ 203 + I) 2y, JJ 

for y > YI, Y3 

,)1 + 
n 3 1 

(17) 

(18) 
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When y~ < Y3, namely Cl~)y I < C37y3, 0- 2 is given by 
Equations 17 and 19 f o r y  =< Yl, Y3, a n d y  _> Yl, Y3, 
respectively. For Y3 ~ Y ~ Yl, it is given by 

1 (zcdlGlylTn rcdI+2G3y2~'),3 
0-2 = -~2 2 " + 2), 3 

+ rcdl al + T ~ -  1 

--alt+[}/[2(.l 1-J - I) bl'yI~ 
2Yl J J  

for 71 < Y < Y3 (20) 

Using Equations 17 to 20, the average stress of Nb3Sn 
for both cases of y] > Y3 and Yl < Y3 is given by 

('l[2 

(l /2) - IA2 dl .G1 7yl 

G] Yl 7u, [(•/2) - Yi ]'~ 
+ 2 ) 

a l l + 2 \  '|(G3y~Ty16 ~- G3Y33)Y3[(l/2)2 -- Y3]), + 

_ d ,a~ ,+ ,  [(•/2) - -  y , ]  
2(n~ + 1)(b,y,,/2y~) 

- d a "'+I [(•/2) --  Y3] 
1+2 3 

2(n3 + 1)(b37y,/2y3) 

(19) 



{I ' " ( '  /T +' 
+d, a , .+-  T -  ~-~y- 1 

+ d~+2 a3 + ~ \2~y3 

(21) 

As y~ and Y3 are a function of ~, the value of ~c given 
by Equation 6 is a function of ~. 

In the next step, we deduce the load-bearing 
capacity of composites for Case A. According to Kelly 
and Tyson, who investigated tungsten fibre-reinforced 
copper [2], the strength of composites with a small 
volume fraction of fibre, in which multiple fracture of 
fibres is observed, is given by a~u V~ where O'mu is the 
tensile strength of the ductile matrix and Vm is the 
volume fraction of matrix. This suggests that the 
strength of such composites is determined by the load- 
bearing capacity of the ductile constituent, so that the 
contribution of segmented fibres to the strength of the 
composite is small. In our specimens the average 
length of segmented Nb3Sn was very small, which 
allows necking of composites as a whole. With these in 
mind, the load-bearing capacity of the present com- 
posites can be deduced by calculating the load-bearing 
capacity of the ductile components. The load-bearing 
capacity of a ductile material can be given as the 
normal stress at which strain-hardening becomes 
unable to compensate for the reduction in area. This 
idea can be applied also for composites consisting of 
ductile components as shown by Mileiko [12], Gar- 
mong and Thompson [13] and Ochiai and Murakami 
[14]. In the present composites, the stress carried by 
ductile components, a~,~, at strain ea without Nb3 Sn is 
given by 

ac,a = {[a~ + b,(e~ - ey,)]n'V~ 

--k [a  3 Jr- b3( / ;  d - -  ~y3)]n3v3 

+ [a4 + b,(ea - ey4)]" V4} exp ( - ea )  (22) 

on the basis of the cross-sectional area of the com- 
posite as a whole, Differentiating Equation 22 with 
respect to ca, we can determine the value of ~ at which 
a~,a reaches a maximum and then the maximum value 
of ffc,d. 

Noting the maximum value of ao,a as a~,m,~, which is 
the load-bearing capacity of the composite as a whole, 
we can calculate ~ by equating ~ro = a . . . . .  in Equation 
6. 

posite is dependent on x. Assuming that the strain in 
the x direction is the same in the ductile components, 
the normal stress at position x is given by 

ac = ({a, + b,[e(x) - ~y l ]}n lVl  

+ {a3 + b3[e(x) - ey3]}"3V3 

+ {a4 + b4[~(x) - ey4]} "4 V4) exp [-e(x)] 

+ ~h(x) 112 (23) 

The value of a2 (x) can be determined as stated below. 
In Case B, the strength of the composite is also given 
by a ..... as well as in Case A. Thus in Case B, by using 
Equation 23 in which ac is taken as ac,ma~, the value of 
~(x) can be calculated in the following manner using 
the condition that the normal stress (load) should be 
equal in any cross-section. 

Equation 7 can be rewritten as 

1 
~2(x + ax)  - ~2(x) = ~ [rccl~,_~(x)Ax 

+ ndl+2z~ 3(x)Ax] (24) 

where Ax is the differential operator of x. First we 
consider the situation at x = 0. The true strain in the 
x direction of the composite at x = 0 is equal to ed at 
which ac, d reaches a maximum, which can be deter- 
mined from Equation 22. Thus the values of 7~-2(0) 
and 72-3 (0) can be approximately expressed by setting 

= ~(x) in Equations 11 and 12, and by substituting 
e(x)  = ed and x = 0 into Equations 11 and 12, 
respectively. Substituting y~_2(0) and 72-~(0) into 
Equation 9, we can determine r l-2 (0) and r2_ 3 (0). The 
value of a~ is zero at x = 0, since the Nb3 Sn is broken 
at x = 0 by definition. Thus the value of a2(Ax) can 
be calculated by substituting ~j-2 (0), r2 3 (0) and 02(0) 
(= 0) into Equation 24. The value of s(Ax) can then be 
calculated by substituting ~r2(Ax ) into Equation 23. 

In the next step, 7~_~(Ax) and y2_3(Ax) can be cal- 
culated by substituting e(x)  = e(Ax) and x = Ax into 
Equations 11 and 12 and then z~_2(Ax) and T2_3(Ax) 
from Equation 9. Substituting L 2(Ax), r2-3(Ax) and 
a2(Ax) into Equation 24, we have a2(2Ax). Substitut- 
ing o-2(2Ax) into Equation 23, we have e(2Ax). In this 
way, by increasing x step by step by Ax, the quantity 
e(Exe) can be obtained. Of course, when the situations 
of 7y, < 8(x)[(//2) - x] and 7y2 = e(x)[(//2) - x] 
appear during this process, Equation 8 should be used 
for estimation of zt_2(x) and ~2-3(x) instead of 
Equation 9. The average strain of composite ~ is given 
by 

= e ( i A x ) A x  (//2) (25) 
L i=0 ] 

3.3. Calculation method of strength and 
elongation for Case B 

In Case A, the load at any cross-section is a pr ior i  

assumed to be the same due to homogeneous fracture 
of Nb3Sn. On the other hand, in Case B the equality 
of load at any cross-section should be formulated. 

In Case B, the strain in the x direction of the corn- 

4. Results of calculat ion 
First O'yj, O-uj and euj (where j refers to the layer) were 
measured experimentally for niobium, whose data are 
given by Ochiai et al. [1], and those for Cu-Sn were 
deduced by measuring the tin concentration in the 
Cu-Sn matrix, Xsn, followed by interpolation in the 
a y - - X S n  , O ' u - X s n  and eu-Xs, relations for fully annealed 

21 78 



E 

0 

40 
.,..-,,. 
,= 

35 

30 

g L T I (a) 

/ & ......... A ----"" 

5 

/ 

/ ° ~ 0  . . . I .0 -"0  

I I ..... 

~ O ~  

~. . .O -.-..._. 
O """ "~ZX~ A 

ZX..~. ~ ~ A ~ "  

I I 

102 103 
t (ksec) 

.......0 

{b) 

Figure 4 Variations of (a) c and (b) d] as a function of anneal- 
ing time at the annealing temperatures of (o) 973 and (zx) 1073 K. 
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Cu-Sn alloys [15], as in our former work [1]. Those 
for copper were taken from the values for Xs, = 0. 
The value of %j, z~ and 7y~ were calculated from ayiEj, 
ayj/2 and L.JGj ,  respectively. These yield and tensile 
stresses and strains both in tensile and shear con- 
ditions were thus determined for each heat treatment. 
E~, E 3 and E4 were taken to be 105, 125 and 125 GPa, 
respectively, and G~, G 3 and G4 to be 38, 48 and 
48GPa, respectively. Then a r bj and nj (j = 1, 
3 and 4) were calculated from Equations 3 to 5. The 
values of I and V~ to V 4 were taken from Ochiai et al. 
[1]. As c and dl varied as a function of annealing time 
as shown in Fig. 4, the values of dl and d~+2 
(=  d~ + 2c) were taken from Fig. 4. The value of 
d1+2+3 was calculated to be 71.5#m from the bronze 
ratio of the present specimens (= 2) and the original 
diameter of niobium filaments (41.3 ym). After deter- 
mining these values, the values of a~ and a (normal 
elongation to failure) were calculated following the 
methods stated in Sections 3.2 and 3.3 for Cases A and 
B, respectively. 

Fig. 5 shows the variation of ac plotted against V2. 
Within the range investigated, the calculated values of 
ac are nearly the same as those measured experiment- 
ally, indicating that the load-bearing capacity of the 
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Figure 5 Comparison of (O) calculated with (zx) experimental values 
of a c. 

Figure 6 ( - - )  Variation of e(x) in Case B in specimens with (a) 
V z = 0.035 made by annealing at 973K for 86ksec and (b) 
V2 = 0.145 made by annealing at 1073 K for 1730 ksec, together 
with the calculated values o f f  for ( - - - )  Case A and ( - , - )  Case B 
for comparison. 

present composite is determined by the load-bearing 
capacity of the ductile components, as formulated in 
the present work. 

The normal elongation e(x)  in Case B as a function 
of x for the specimen with V: = 0.035 made by 
annealing at 973K for 86ksec, and that with 
Vz = 0.145 made by annealing at 1073K for 
1730 ksec, is shown in Fig. 6, where the average elon- 
gations # for Cases A and B calculated by the present 
method are superimposed for comparison. The value 
of e(x)  for Case B decreases with increasing x up to 
x = 1/2, at which it becomes a minimum. It is evident 
that the elongation of ductile components is supressed 
by the existence of Nbs Sn segments in Case B. On the 
other hand, # is independent of x by definition in Case 
A. 

Fig. 7 shows the ratio of the load carried by the 
Nb3Sn compound, 82V2, to the total stress of the 
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Figure 7 Increase in a2 F2/a~ with increasing V2 in Case A. 
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composite at fracture for Case A. The ratio 52 V2/ac 
increases with increasing II2, indicating that the exist- 
ence of segmented Nb3Sn compound reduces elon- 
gation of the composite with increasing 112 when 
Equation 6 is obeyed. In Case B, the ratio of the load 
carried by Nb3Sn segments to the stress of the com- 
posite increases with increasing x and it becomes a 
maximum at x = l/2. Fig. 8 shows the variation of 
a2(l/2)V2/a c in Case B as an example. The ratio 
increases with increasing Vz, indicating that the 
elongation of the composite is also reduced with 
increasing 112 when V2 becomes large, when Equations 
23 and 25 are obeyed. 

The calculated normal strain to failure of com- 
posite, ~, is presented in Figs 9 and 10 for Cases A and 
B, respectively, where the measured values of ~ are 
superimposed for comparison. The tendency that 
decreases with increasing V2 is well realized by the 
present calculation method, although some dis- 
crepancy between measured and calculated values is 
found for large V2. The reason why such a discrepancy 
arises might be attributed to the many approximations 
made in the present calculation. Although the present 
calculation results do not agree with experimental 
results in a rigid manner, it might be concluded that 
the present approximate calculation method is useful 
at least to predict ~ in a qualitative manner. 

In the present work, the difference in # between 
Cases A and B was small within the accuracy of the 
present calculation methods. Therefore it was not 
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determined which of Cases A and B is the more realis- 
tic. On this point further study is needed. 

5. C o n c l u s i o n s  
Approximate calculation methods based on shear lag 
analysis and the plastic instability approach for metal- 
lic composites were proposed to describe the tensile 
strength and elongation to failure of multifilamentary 
Nb3Sn superconducting composite materials with 
small amounts of Nb3 Sn compound which shows mul- 
tiple fracture under loading. The application of the 
proposed methods to the experimental results showed 
that the proposed methods can fairly well describe the 
results. 
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